

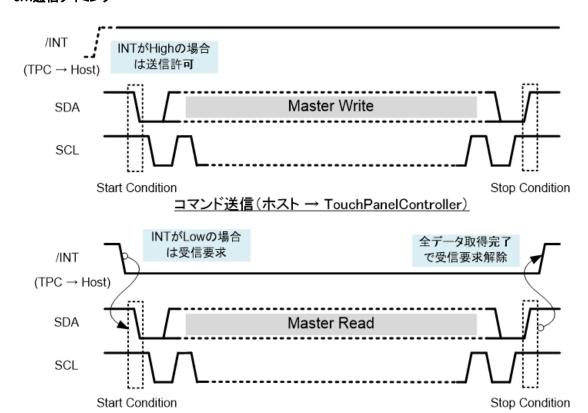

DMC Co., Ltd.

DUSx200シリーズコントローラ I2Cインターフェース仕様書

# 目次

| 1.変更履歴            |    |
|-------------------|----|
| 2.適用              | 3  |
| 3.ホストインターフェース     | 3  |
| 3.1.通信タイミング       |    |
| 3.2.制御信号          |    |
| 3.3.通信仕様          | 4  |
| 3.4.プロトコル仕様       | 4  |
| 4.レポート形式          | 5  |
| 4.1.タッチ座標データ      |    |
| 4.2 水レポート         |    |
| 5.メンテナンスコマンド      | 6  |
| 5.1.コマンド・応答形式     | 6  |
| 5.2.コマンド一覧        | 6  |
| 5.2.1.キャリブレーション   |    |
| 5.2.2.バージョン情報取得   |    |
| 5.2.3.ファームウェア詳細情報 | 8  |
| 5.2.4.座標送信 禁止/許可  | c  |
| 5.2.5.自己診断結果取得    | 10 |
| 5.2.6.スリープモード     | 11 |
| 6.注意事項            |    |
| 7.使用上の注意          | 14 |

# 1.変更履歴


| 版   | 日付         | 内容                                   | 変更者 |
|-----|------------|--------------------------------------|-----|
| 0.1 | 2018/8/7   | 暫定版 初版発行                             | -   |
| 0.2 | 2018/11/30 | 補足説明追加及び誤記修正                         | 藤谷  |
|     |            | 2.4 プロトコル仕様 Master Writeに注釈追加        |     |
|     |            | 4.2 コマンド一覧 欄外に注釈追加                   |     |
|     |            | 4.2.6 スリープコマンド 送信バイト数(誤記)を修正         |     |
|     |            | 5 注意事項                               |     |
|     |            | ・コマンド送信と座標更新同時発生時の通信シーケンス図の<br>様式を変更 |     |
|     |            | ・ホストとTPCが同時に送信を開始した場合のタイミングチャートを追加   |     |
| 1.0 | 2019/9/3   | ホストインターフェースを目次番号2から3へ変更。             | 永守  |
|     |            | それに伴い目次番号2~6を修正                      |     |
|     |            | 4.2 水レポート 項目の追加                      |     |
|     |            |                                      |     |
|     |            |                                      |     |
|     |            |                                      |     |
|     |            |                                      |     |
|     |            |                                      |     |
|     |            |                                      |     |
|     |            |                                      |     |
|     |            |                                      |     |
|     |            |                                      |     |
|     |            |                                      |     |

# 2.適用

本仕様書は投影型静電容量方式タッチパネルコントローラDUSx200シリーズ向けのI2Cインターフェース仕様について記述します。

# 3.ホストインターフェース

# 3.1.通信タイミング



応答または座標データ受信(TouchPanelController → ホスト)

# 3.2.制御信号

| 信号名  | 説明                                                                                                                      |
|------|-------------------------------------------------------------------------------------------------------------------------|
| /INT | オープンドレイン、Lowアクティブの入出力信号です。                                                                                              |
|      | ① INTがHigh (TPCが受信可能状態)の場合は、ホストからTPCへのコマンド送信が可能です。                                                                      |
|      | ② TPCからホストへ通知するデータがある場合は、TPCがINTをLowにします。ホスト側は<br>Master Read動作を行い、TPCからデータを受信して下さい。ホスト側の全データ受信<br>完了により、INTはHighとなります。 |
|      | ③ TPCをスリープ状態から通常動作状態に復帰させる場合は、ホストがINTをLowにします (Lowパルスは100 $\mu$ s以上保持してから、必ずHighに戻して下さい)。                               |
| SCL  | I2Cのクロック信号です。ホスト(I2C Master)が出力します。                                                                                     |
| SDA  | I2Cのデータ信号です。I2Cプロトコルに従ってRead/Writeを行います。                                                                                |

#### 3.3.通信仕様

| スレーブアドレス | 0x5C                  |
|----------|-----------------------|
| 転送速度     | 400Kbps [Fast mode]   |
| 転送データ長   | 最大255バイト+ Length 1バイト |
| マスタ接続形態  | シングルマスタ(マルチマスタは非対応)   |

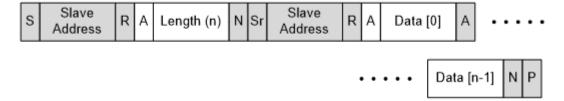
#### 3.4.プロトコル仕様

#### Master Write

ホストはLengthに設定したバイト数分のData(最大255バイト)を1トランザクションで送信します。



%Lengthのデータ長を超過してデータを受信した場合(Length 0の場合も含む)、TPC側はNAKで応答し受信データを破棄します。


# Master Read

ホストはLengthに設定されたパイト数分のData(最大255パイト)を取得します。TPCは以下の 2通りの方式をサポートします。

【方式1】LengthとDataを1トランザクションで取得

| s | Slave<br>Address | R | Α | Length (n) | Α | Data [0] | Α | • • • • • | Data [n-1] | N P |  |
|---|------------------|---|---|------------|---|----------|---|-----------|------------|-----|--|
|---|------------------|---|---|------------|---|----------|---|-----------|------------|-----|--|

【方式2】LengthとDataを連続する2トランザクションで取得



Master (Host) -> Slave (TPC) Slave (TPC) -> Master (Host)

S: Start Condition W (0): Write Length: Dataのバイト数 (1パイト) Sr: Repeated Start Condition R (1): Read Data : コマンド、応答、座標データ

Sr: Repeated Start Condition R (1): Read Data : コマンド、応答、座標データ(最大255パイト) P: Stop Condition A (0): Acknowledge

# 4.レポート形式

# 4.1.タッチ座標データ

タッチ座標データは以下のフォーマットでホストに送信します。

| 0                  | 1        | 2      | 3         | 4  | 5  | 6  |
|--------------------|----------|--------|-----------|----|----|----|
| Report             | カッ・エ     | タッチ1情報 |           |    |    |    |
| Report タッチ<br>ID 数 | フラグ      | X座     | <b>荃標</b> | Y座 | 標  |    |
|                    | <i>—</i> |        | 下位        | 上位 | 下位 | 上位 |

• • • • • • • •

.....

| p+2             | p+3 | p+4 | p+5 | p+6 |  |  |
|-----------------|-----|-----|-----|-----|--|--|
| タッチn情報(最大10点まで) |     |     |     |     |  |  |
| フラ              | X座  | 標   | Y座  | 標   |  |  |
| グ               | 下位  | 上位  | 下位  | 上位  |  |  |

p:(タッチ数 - 1)\*5

Report ID 0x04

 タッチ数
 多点押し検出時のタッチ数(最大10点)

 タッチ情報
 各コンタクトの座標情報(タッチ数分)

フラグ [b7 - b6] 0固定

[b5 - b1] 指ID(0 - 9)

[b0] Tip SW(1 : Down 0 : Up)

X、Y座標 タッチコンタクトの座標

◆ I2C バス転送時は、Report ID の前に Length (1 バイト) が付加されます。

# 4.2 水レポート

I2C版では水検出機能をサポートしていません(USB版のみサポートします)。

## 5.メンテナンスコマンド

ホストからI2C経由でメンテナンスコマンドを使用することができます。

#### 5.1.コマンド・応答形式

| 0      | 1    | 2      | 3  | 4       |     | 4 + n   |
|--------|------|--------|----|---------|-----|---------|
| Header | コマンド | 送信バイト数 | 引数 | Data[0] | ••• | Data[n] |

- ◆ I2C バス転送時は、Header の前に Length (1 バイト) が付加されます。
- ◆ Header は 0x02 固定です。
- ◆ 送信バイト数は引数と Data の合計バイト数です。
- コマンド実行後、タッチパネルコントローラは応答を送信して処理結果をホストに通知します。
- ◆ コマンドを発行した場合は、必ず応答を取得して下さい(応答取得のタイミングに関しては、3.1 通信タイミング、3.2 制御信号を参照して下さい)。応答を取得しない状態で次のコマンドを発行した場合は、タッチパネルコントローラの動作は保証されません。

#### 5.2.コマンド一覧

| コマンド      | バイト数 | 引数   | Data  | 機能            |
|-----------|------|------|-------|---------------|
|           | 0x01 | 0x01 | なし    | キャリブレーション     |
|           | 0x02 | 0x04 | 0x00  | バージョン情報取得     |
| 0x4C('L') | 0x02 | 0x06 | 0x00  | ファームウェア詳細情報取得 |
|           | 0x02 | 0x08 | 禁止·許可 | 座標送信 禁止/許可    |
|           | 0x02 | 0x09 | 取得方式  | 自己診断結果取得      |
|           | 0x02 | 0x71 | 0x00  | スリープモード       |

- ◆ 上記以外のコマンドを発行した場合、タッチパネルコントローラの動作は保証されません。
- ◆ タッチパネルコントローラからコマンドコードが 0x4C 以外のデータを受信した場合、ホスト側ではそれらのデータを無視(無処理で破棄)して下さい。0x4C 以外のデータは 12C インターフェース版のタッチパネルコントローラでは未サポートのオプションデータのため、無視しても機能的には問題ありません。

#### 5.2.1.キャリブレーション

タッチパネルのキャリブレーションを実行します。

## [コマンド]

| Header | コマンド       | 送信バイト数 | 引数   | Data |
|--------|------------|--------|------|------|
| 0x02   | 0x4C ('L') | 0x01   | 0x01 | なし   |

- ◆ キャリブレーションの実行は数秒間を要します(実行時間はパネルの電極数等に依存するため、製品毎に異なります)。
- ◆ キャリブレーションデータはタッチパネルコントローラの Data Flash に保存されます。

#### [応答]

| Header | コマンド       | 送信バイト数 | 引数   | 処理結果    |
|--------|------------|--------|------|---------|
| 0x02   | 0x4C ('L') | 0x02   | 0x01 | 0x01 正常 |
|        | 0,40 (L)   |        | 0.01 | 0x00 異常 |

キャリブレーション実行後、応答により処理結果を通知します。

#### 5.2.2.バージョン情報取得

ファームウェアのバージョン情報を取得します。

#### [コマンド]

| Header | コマンド       | 送信バイト数 | 引数   | Data |
|--------|------------|--------|------|------|
| 0x02   | 0x4C ('L') | 0x02   | 0x04 | 0x00 |

# [応答]

| Header | コマンド       | 送信バイト数 | 引数   | バージョン情報<br>[n] |
|--------|------------|--------|------|----------------|
| 0x02   | 0x4C ('L') | n + 1  | 0×04 | ASCII          |

◆ バージョン情報は ASCII コードです。内容は製品により異なるためサイズは可変となります。

## <バージョン情報の構成>

"nn....n:PROG-pp...p DATA-dd...d"

nn...n プロダクト名

pp...p プログラムバージョン

dd...d データバージョン

## 5.2.3.ファームウェア詳細情報

ファームウェアの詳細情報を取得します。

## [コマンド]

| Header | コマンド       | 送信バイト数 | 引数   | Data |
|--------|------------|--------|------|------|
| 0x02   | 0x4C ('L') | 0x02   | 0×06 | 0x00 |

## [応答]

| Header | コマンド       | 送信バイト数 | 引数   |    | 詳細  | 情報  |      |
|--------|------------|--------|------|----|-----|-----|------|
| Headel | 1171       | 区旧/竹门数 | 刀奴   | 0  | 1   | 2   | 3    |
| 0x02   | 0x4C ('L') | 0x14   | 0×06 | 電机 | 電極数 |     | 象度   |
| UXUZ   | 0X40 (L)   | 0.114  | 0,00 | X軸 | Y軸  | Low | High |

| 詳細情報         |                               |      |           |      |      |       |     |      |
|--------------|-------------------------------|------|-----------|------|------|-------|-----|------|
| 4            | 5                             | 6    | 7         | 8    | 9    | 10    | 11  | 12   |
| タッチ数         | 論理最大値 横幅X 論理最大値 高さY 物理最大値 横幅X |      | 論理最大値 高さY |      | 物理最大 | 値 高さY |     |      |
| <b>アフノ 奴</b> | Low                           | High | Low       | High | Low  | High  | Low | High |

| 詳細情報  |              |                 |             |  |     |  |  |
|-------|--------------|-----------------|-------------|--|-----|--|--|
| 13    | 14           | 15              | 15 16 17 18 |  |     |  |  |
| 0x00  | 機能Flag       | Data Flashバージョン |             |  |     |  |  |
| 0,000 | 15X REI I ag | LSB             |             |  | MSB |  |  |

電極数X軸、Y軸の電極数解像度論理座標係数

タッチ数 同時押しの最大タッチ数

論理最大値タッチパネルの最大論理座標(最大サイズ)物理最大値タッチパネルの実パネルサイズ(単位:0.01[inch])機能Flag[b0] MCU type0: M48x 1: M45x

[b1] TX/RX軸 0:TX / X軸 RX / Y軸

1: TX / Y軸 RX / X軸

[b2 - 7] 未使用(0)

Data Flashバージョン Data Flashの管理番号

# 5.2.4.座標送信 禁止/許可

ホストに対する座標送信を禁止・許可します。

# [コマンド]

| Header | コマンド       | 送信バイト数 | 引数   | 禁止·許可                     |
|--------|------------|--------|------|---------------------------|
| 0x02   | 0x4C ('L') | 0x02   | 0x08 | 0x00 許可(デフォルト)<br>0x01 禁止 |

◆ タッチパネルコントローラを再起動した場合は、設定値を保持せずデフォルト状態に戻ります。

# [応答]

| Header | コマンド       | 送信バイト数 | 引数   | 処理結果    |
|--------|------------|--------|------|---------|
| 0x02   | 0x4C ('L') | 0x02   | 0x08 | 0x01 正常 |
| 0.02   | UX40 (L)   | 0,02   | 0,00 | 0x00 異常 |

#### 5.2.5.自己診断結果取得

自己診断テストの結果を取得します。

# [コマンド]

| Header | コマンド       | 送信バイト数 | 引数   | 取得方式    |
|--------|------------|--------|------|---------|
| 0x02   | 0x4C ('L') | 0x02   | 0x09 | 0x00 最新 |
| 0x02   | UX4C (L)   | 0x02   | 0x09 | 0x01 全て |

#### <取得方式>

0x00 最後に検出した異常コードを取得します

0x01 電源投入から本コマンドを発行するまでに検出した全ての異常コードを取得します。

#### [応答] 取得方式 0x00(最新情報)の場合

| Header | コマンド       | 送信バイト数 | 引数   | 処理結果    | 診断結    | 果  |
|--------|------------|--------|------|---------|--------|----|
| 0x02   | 0x4C ('L') | 0x03   | 0×09 | 0x01 正常 | 0x00   | 正常 |
| 0x02   | UX4C (L)   | 0x02   | 0x09 | 0x00 異常 | 0x00以外 | 異常 |

- ◆ 処理結果が 0x01(正常)の場合は送信バイト数が 3 となり、診断結果が有効になります。診断結果には、 最後に検出した異常コード、または 0x00(正常)が設定されます。
- ◆ 処理結果が 0x00(異常)の場合は送信バイト数が 2 となり、診断結果は付加されません。

#### [応答] 取得方式 0x01(全情報)の場合

| Header | コマンド     | 送信バイト数 | 引数   | 処理結果    | 診断約       |         |
|--------|----------|--------|------|---------|-----------|---------|
|        |          |        | 3132 |         | Data[0]~[ | Data[n] |
| 0x02   | 0x02     |        | 0×09 | 0x01 正常 | 0x00      | 正常      |
| 0,02   | 0X40 (L) | バイト数+2 | 0.03 | 0x00 異常 | 0x00以外    | 異常      |

- ◆ 処理結果が 0x01(正常)の場合は、診断結果に電源投入以降の全ての異常コード(最大 59 バイト)が付加されます。診断結果が正常の場合は、診断結果に 0x00(1 バイト)が付加されます。
- ◆ 処理結果が 0x00(異常)の場合は送信バイト数が 2 となり、診断結果は付加されません。

# 異常コード(参考)

| 異常コード | 異常内容                      | 備考 |
|-------|---------------------------|----|
| 0x1x  | Data Flash異常(パラメータ領域)     |    |
| 0x2x  | Data Flash異常(キャリブレーション領域) |    |
| 0x3x  | AFE異常                     |    |
|       |                           |    |

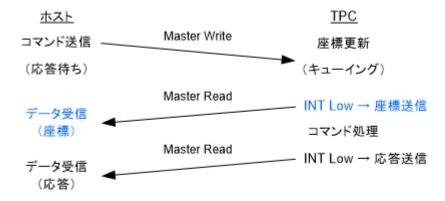
## 5.2.6.スリープモード

タッチパネルコントローラを低消費電力モードに移行します。

#### [コマンド]

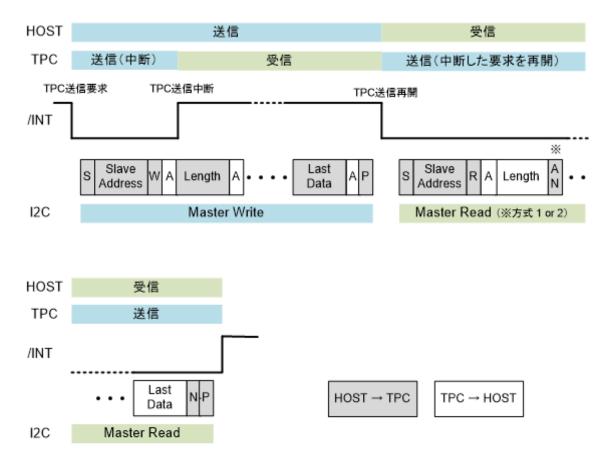
| Header | コマンド       | 送信バイト数 | 引数   | Data |
|--------|------------|--------|------|------|
| 0x02   | 0x4C ('L') | 0x02   | 0x71 | 0x00 |

- ◆ スリープモードに移行すると、タッチパネルコントローラは座標検出、コマンド処理等の全ての処理を停止し、CPUを低消費電力モードへ移行してホストからの起床待ち状態となります(ウェイクアップ以外の処理は受け付けません)。
- スリープモードから通常動作モードへの復帰は、ホスト側で INT 信号を 100 μs 以上 Low に保持して下さい (INT 信号はオープンドレイン設定の入出力信号のため、通常状態では必ず High に戻してください。 INT 信号の詳細は、3.2 制御信号を参照して下さい)。


## [応答]

| Header | コマンド       | 送信バイト数 | 引数   | 処理結果    |
|--------|------------|--------|------|---------|
| 0x02   | 0x4C ('L') | 0x02   | 0x71 | 0x01 正常 |
|        |            |        |      | 0x00 異常 |

- ◆ 処理結果が正常の場合は、ホスト側が応答を Master Read により取得完了したタイミングで、タッチパネルコントローラはスリープモードに移行します。
- ◆ 処理結果が異常の場合は、タッチパネルコントローラはスリープモードに移行しません(通常動作状態を 継続します)。


## 6.注意事項

- ◆ ホストへの受信要求(INT 信号)がアクティブになっている場合は、速やかにデータ受信を行って下さい。タッチ パネルコントローラ内部にホストへの受信要求(座標データや応答)が保留されている場合、それ以降の座標 検出やコマンド処理に対する遅延や停滞等の影響が発生します。
- ◆ タッチパネルコントローラの座標更新処理中にホストからのコマンド送信が行われた場合、コマンド応答の直前に座標データが通知される場合があります。このケースにおいては、タッチパネルコントローラからホストへの受信要求が連続して発行されるため、ホストは全ての受信要求に対して通知されたデータを取得して下さい。



コマンド送信と座標更新が同時に行われた場合

◆ タッチパネルコントローラの送信要求(INT Low)とホストの送信開始(Master Write)が同時に発生した場合、タッチパネルコントローラはSlave Address + Wを認識した時点で送信要求を中断し(INT L → H)、ホストからの送信データを受信します。ホストの送信(Master Write)が完了した時点で、再び送信要求を発行しますので(INT H → L)、ホストはMaster Readを行いタッチパネルコントローラの送信データを受信して下さい。



ホストとTPCが同時に送信動作を開始した場合

# 7.使用上の注意

- § 本仕様は予告なく変更する場合があります。
- § 本製品を使用されることにより発生した損害に対しては、一切の責任を負いかねます。
- § 本製品は、標準的な用途(OAなどの事務用機器、産業、通信などの関連機器、家庭用機器など)に使用されることを前提としています。故障や、誤動作が直接人体に危害が及ぶ可能性がある場合、又、きわめて高い信頼性が要求される特殊用途(航空・宇宙、原子力制御用、生命維持のための医療用など)へのご使用はお避けください。
- § 本製品が故障しても、人身事故、火災事故、社会的な損害を生じさせないよう、安全設計をお願いします。

DUSx200 シリーズコントローラ I2C インターフェース仕様書 第 1.0 版 2019 年 9 月 3 日発行 ©2019 DMC Co., Ltd.

本書の再配布を認めますが、本書の改変を禁止します。

# 禁ディ・エム・シー

http://www.dmccoltd.com/

〒108-0074 東京都港区高輪 2-18-10 高輪泉岳寺駅前ビル 11F